Sagot :
- Let length be x
- width=x+5
We know
[tex]\boxed{\sf Area=Length\times Width}[/tex]
- Putting values
[tex]\\ \sf\longmapsto 336=x(x+5)[/tex]
[tex]\\ \sf\longmapsto x^2+5x=336[/tex]
[tex]\\ \sf\longmapsto x^2+5x-336=0[/tex]
- Using mid term split
[tex]\\ \sf\longmapsto x^2-16x+21x-336=0[/tex]
[tex]\\ \sf\longmapsto x(x-16)+21(x-16)=0[/tex]
[tex]\\ \sf\longmapsto (x-16)(x+21)=0[/tex]
[tex]\\ \sf\longmapsto (x-16)=0\:or\:(x+21)=0[/tex]
[tex]\\ \sf\longmapsto x=16\:or\:x=-21[/tex]
- Ignore negative value
[tex]\\ \sf\longmapsto Length=x=16yd[/tex]
[tex]\\ \sf\longmapsto Width=x+5=16+5=21yd[/tex]
Option a is correct
1. Find out which one has the width 5 yd longer
2. It is A and B
3. Multiply both
16x21= 336. 21x26=546
4. See which one equals 336
5. It is option A
6. Your answer is option A
2. It is A and B
3. Multiply both
16x21= 336. 21x26=546
4. See which one equals 336
5. It is option A
6. Your answer is option A