Answer:
-2 + 2i
Step-by-step explanation:
[tex](1 + i)^{3}[/tex]
i = [tex]\sqrt{-1}[/tex]
[tex](1 + \sqrt{-1})^3[/tex]
[tex][(1 + \sqrt{-1})(1 + \sqrt{-1})] (1 + \sqrt{-1})[/tex]
distribute the first 2 expressions
(1 + 2[tex]\sqrt{-1}[/tex] - 1 ) [tex](1 + \sqrt{-1})[/tex]
distribute
1 + 2[tex]\sqrt{-1}[/tex] - 1 +
combine like terms
-2 + 2 [tex]\sqrt{-1}[/tex]
which is -2 + 2i