Sagot :
First we have to find angle D
As it is a quadrilateral
[tex]\\ \sf\longmapsto <A+<B+<C+<D=360[/tex]
[tex]\\ \sf\longmapsto 45+50+35+<D=360[/tex]
[tex]\\ \sf\longmapsto 130+<D=360[/tex]
[tex]\\ \sf\longmapsto <D=360-130[/tex]
[tex]\\ \sf\longmapsto <D=230°[/tex]
Now
[tex]\\ \sf\longmapsto <D+x=360[/tex]
[tex]\\ \sf\longmapsto x+230=360[/tex]
[tex]\\ \sf\longmapsto x=360-230[/tex]
[tex]\\ \sf\longmapsto x=130°[/tex]
Answer:
x = 130
Step-by-step explanation:
Sum of all the angle of quadrilateral = 360°
50 + 45 + 35 + ∠ADC = 360
130 + ∠ADC = 360
∠ADC = 360 - 130
∠ADC = 230
x = Reflex ∠ADC
= 360 - 230
= 130