Solution :
1). The cost of the formula is given as :
$ 19,350 + $12 x
2). 95% [tex]\text{confidence interval}[/tex] for the prediction is :
[tex]$21430 - 1.96 \times 220 < \text{Yf} < 21430+1.96 \times 220$[/tex]
[tex]$20998.8 < \text{Yf} < 21861.2$[/tex]
[tex]$20999 < \text{Yf} < 21861$[/tex] (rounding off)
3). r = 0.92
Therefore, [tex]$r^2 = 0.8464$[/tex]
That is 84.64 % of the variability in the moving cost is best explained by the number of moves.