Sagot :
Answer:
A(-9, 8), B(-5, 5), C(1, 13), D(-3, 16) → 50 square units
I(-6, 2), J(2, 2), K(2, -8), L(-6, -8) → 80 square units
Q(10, 0), R(15, 5), S(25, -5), T(20, -10) → 100 square units
U(0, 5), V(15, 20), W(25, 10), X(10, -5) → 300 square units
Step-by-step explanation:
The area of a rectangle, given the coordinates of the vertices is found as follows;
1) The vertices of the rectangle ABCD are; A(-9, 8), B(-5, 5), C(1, 13), and D(-3, 16)
The length of side AB = √((-9 - (-5))² + (8 - 5)²) = 5
The length of side BC = √((1 - (-5))² + (13 - 5)²) = 10
The length of side CD = √((1 - (-3))² + (13 - 16)²) = 5
The length of side DA = √(((-9) - (-3))² + (8 - 16)²) = 10
The area of rectangle ABCD = 5 × 10 = 50 square units
2) The vertices of the rectangle EFGH are; E(30, 20), F(39, 29), G(49, 19), and H(40, 10)
The length of side EF= √((39 - 30)² + (29 - 20)²) = 9·√2
The length of side FG = √((39 - 49)² + (29 - 19)²) = 10·√2
The length of side GH = √((40 - 49)² + (10 - 19)²) = 9·√2
The length of side HE = √((40 - 30)² + (10 - 20)²) = 10·√2
The area of rectangle EFGH = 9·√2 × 10·√2 = 180 square units
3) The vertices of the rectangle IJKL are; I(-6, 2), J(2, 2), K(2, -8), and L(-6, -8)
The length of side IJ= √((-6 - 2)² + (2 - 2)²) = 8
The length of side JK= √((2 - 2)² + ((-8) - 2)²) = 10
The area of rectangle IJKL = IJ × JK
∴ The area of rectangle IJKL = 8 × 10 = 80 square units
4) The vertices of the rectangle MNOP are; M(5, 5), N(11, 5), O(11, -5), and P(5, -5)
The length of side MN = √((5 - 11)² + (5 - 5)²) = 6
The length of side NO = √((11 - 11)² + ((-5) - 5)²) = 10
The area of rectangle MNOP = 6 × 10 = 60 square units
5) The vertices of the rectangle QRST are; Q(10, 0), R(15, 5), S(25, -5), and T(20, -10)
The length of side QR = √((10 - 15)² + (0 - 5)²) = 5·√2
The length of side RS = √((25 - 15)² + ((-5) - 5)²) = 10·√2
The area of rectangle QRST = 5·√2 × 10·√2 = 100 square units
6) The vertices of the rectangle UVWX are; U(0, 5), V(15, 20), W(25, 10), and X(10, -5)
The length of side UV = √((0 - 15)² + (5 - 20)²) = 15·√2
The length of side VW = √((25 - 15)² + (10 - 20)²) = 10·√2
The area of rectangle UVWX = 15·√2 × 10·��2 = 300 square units
Answer:
A(-9, 8), B(-5, 5), C(1, 13), D(-3, 16)—
(50 square units)
I(-6, 2), J(2, 2), K(2, -8), L(-6, -8)—
(80 square units)
Q(10, 0), R(15, 5), S(25, -5), T(20, -10)—(100 square units)
U(0, 5), V(15, 20), W(25, 10), X(10, -5)—(300 square units)
Step-by-step explanation:
got it right on test, hope I helped