Solve each system of equations by substitution. Clearly identify your solution.

Solve Each System Of Equations By Substitution Clearly Identify Your Solution class=

Sagot :

Answer:

(0, 2)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Distributive Property

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I

  • Coordinates (x, y)
  • Terms/Coefficients
  • Solving systems of equations using substitution/elimination

Step-by-step explanation:

Step 1: Define Systems

y = x + 2

3x + 3y = 6

Step 2: Solve for x

Substitution

  1. Substitute in y [2nd Equation]:                                                                         3x + 3(x + 2) = 6
  2. [Distributive Property] Distribute 3:                                                                 3x + 3x + 6 = 6
  3. Combine like terms:                                                                                         6x + 6 = 6
  4. [Subtraction Property of Equality] Subtract 6 on both sides:                        6x = 0
  5. [Division Property of Equality] Divide 6 on both sides:                                  x = 0

Step 3: Solve for y

  1. Substitute in x [1st Equation]:                                                                           y = 0 + 2
  2. Add:                                                                                                                   y = 2

Answer:

(0, 2)

Step-by-step explanation:

Since y is x + 2, we can replace y with x + 2

3x + 3y = 6

3x + 3(x+2) = 6

3x + 3x + 6 = 6

6x + 6 = 6

6x = 0

x = 0

y = x + 2

y = 2

Now we can check by replacing x with 0

3x + 3y = 6

3(0) + 3y = 6

0 + 3y = 6

3y = 6

y = 2