Answer:
[tex]\frac{15}{ \sqrt{31} - 4}} = \sqrt{31} + 4[/tex]
Step-by-step explanation:
[tex]\frac{15}{\sqrt{31} - 4}\\\\=\frac{15}{\sqrt{31} - 4} \times \frac{\sqrt{31} + 4}{\sqrt{31}+ 4} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [ \ rationalizing \ the \ denominator \ ]\\\\=\frac{15( \sqrt{31} + 4 )}{(\sqrt{31})^2 - (4)^2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [ \ (a-b)(a+b) = a^2 - b^2 \ ]\\\\=\frac{15 ( \sqrt{31} + 4)}{31 - 16}\\\\=\frac{15 (\sqrt{31} + 4)}{15}\\\\= \sqrt{31} + 4[/tex]