Sagot :
Answer:
One lamp is equal to 23 dollars
One table is equal to 42 dollars.
Step-by-step explanation:
We can solve this by first organizing what we have.
1 table (t) + 2 lamps (l) = 88.
2 tables (t) + 3 lamps (l) = 153.
_____________
===============
1t + 2l = 88
2t + 3l = 153
===============
-------------------------
If we multiply both sides by 2 on the first equation of
1t + 2l = 88
we could get
2t + 4l = 176.
If that is true, we can subtract the second equation of
2t + 3l = 153 from the new equation to get the price of a lamp.
2t + 4l = 176
- 2t + 3l = 153
____________
= 0t + l = 23
One lamp is equal to 23.
We can check this by plugging it into an equation.
1 + 2(23) = 88
1t + 46 = 88
1t + 46 - 46 = 88 - 46
1t = 42
If one table equals 42, we can put this back into the second equation to check.
2 (42) + 3 (23) = 153
84 + 69 = 153
That is correct.
Another way to solve is to put this like a system of equations in a graph, by replacing "t" by "x" for example, and "l" by y.
Then you could put it into a graphing calculator and solve by looking for the place where the two lines converge or meet.
Since we put "x" for "t", that means that whatever the x-value is on the solution point, that is the cost of a table, and the y-value is the cost of the lamps.
Another way to solve, is to find the unit rate first by subtracting the first equation from the second equation.
2t + 3l = 153
- 1t + 2l = 88
____________
= t + l = 65
If t + l = 65, we can rearrange that equation to be something like t = 65 - l.
That means "t" is equal to 65 bucks minus a lamp.
We put this back into the first equation of
1t + 2l = 88
and replace "t" with the previous expression.
1(65 - l) + 2l = 88
Simplify/distributive property
65 - l + 2l = 88
65 - 65 - l + 2l = 88 - 65
-l + 2l = 23
l = 23
One lamp is equal to 23 bucks.
Confirmed :)
A lamp cost $23
Let the cost of a table be represented by x
Let the cost of a lamp be represented by y.
Since one table and two lamps cost $88, this can be represented as:
x + 2y = 88 ........ equation i
Since two tables and three lamps cost $153, this can be represented as:
2x + 3y = 153 ........ equation ii
Therefore, the equations are:
x + 2y = 88 ....... i
2x + 3y = 153 ....... ii
From equation i,
x + 2y = 88
x = 88 - 2y ...... iii
Put the value of x into equation ii
2x + 3y = 153
2(88 - 2y) + 3y = 153
176 - 4y + 3y = 153
Collect like terms
-4y + 3y = 153 - 176
-y = -23
y = 23
Therefore, a lamp cost $23
Read related question on:
https://brainly.com/question/15165519