Sagot :
Answer:
The bottom 3 is separated by weight 7.8896 g and the top 3 is separated by weight 8.1904 g.
Step-by-step explanation:
We are given that
Mean, [tex]\mu=8.04 g[/tex]
Standard deviation, [tex]\sigma=0.08g[/tex]
We have to find the two weights that separate the top 3% and the bottom 3%.
Let x be the weight of machine components
[tex]P(X<x_1)=0.03, P(X>x_2)=0.03[/tex]
[tex]P(X<x_1)=P(Z<\frac{x_1-8.04}{0.08})[/tex]
=0.03
From z- table we get
[tex]P(Z<-1.88)=0.03, P(Z>1.88)=0.03[/tex]
Therefore, we get
[tex]\frac{x_1-8.04}{0.08}=-1.88[/tex]
[tex]x_1-8.04=-1.88\times 0.08[/tex]
[tex]x_1=-1.88\times 0.08+8.04[/tex]
[tex]x_1=7.8896[/tex]
[tex]\frac{x_2-8.04}{0.08}=1.88[/tex]
[tex]x_2=1.88\times 0.08+8.04[/tex]
[tex]x_2=8.1904[/tex]
Hence, the bottom 3 is separated by weight 7.8896 g and the top 3 is separated by weight 8.1904 g.