Sagot :
Answer:
1/22
Step-by-step explanation:
2/11 = 4/22 therefore 4/22 + x = 5/22 and 5/22 - 4/22 = 1/22
[tex]\huge\bold{Given :}[/tex]
✎ Sum of two numbers = [tex] \frac{5}{22} [/tex]
✎ One of the number = [tex] \frac{2}{11} [/tex]
[tex]\huge\bold{To\:find :}[/tex]
✿ The other number.
[tex]\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}[/tex]
[tex]\sf\blue{The \:other \:number \:is }[/tex] [tex] \frac{1}{22} [/tex]. ✅
[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\orange{:}}}}}[/tex]
❥ Let the other number be [tex]x[/tex].
❥ As per the question, we have
[tex]sum \: of \: the \: two \: numbers = \frac{5}{22} \\ \\ ⇢ \frac{2}{11} + x = \frac{5}{22} \\ \\⇢ x = \frac{5}{22} - \frac{2}{11} \\ \\ ⇢ x = \frac{5}{22} - \frac{2 \times 2}{11 \times 2} \\ \\⇢ x = \frac{5 - 4}{22} \\ \\ ⇢ x = \frac{1}{22} [/tex]
[tex]\sf\purple{Therefore,\:the\:other\:number\:is}[/tex] [tex] \frac{1}{22} [/tex].
[tex]\huge\bold{To\:verify :}[/tex]
[tex] \frac{2}{11} + \frac{1}{22} = \frac{5}{22} \\ \\➪ \: \frac{2 \times 2}{11 \times 2} + \frac{1}{22} = \frac{5}{22} \\ \\ ➪ \: \frac{4 + 1}{22} = \frac{5}{22} \\ ➪ \: \frac{5}{22} = \frac{5}{22} \\ \\ ➪ \: L. H. S. = R. H. S[/tex]
Hence verified. ✔
[tex]\circ \: \: { \underline{ \boxed{ \sf{ \color{green}{Happy\:learning.}}}}}∘[/tex]