Answer:
1.07 × 10⁸ m/s
Explanation:
Using the relativistic Doppler shift formula which can be expressed as:
[tex]\lambda_o = \lambda_s \sqrt{\dfrac{c+v}{c-v}}[/tex]
here;
[tex]\lambda _o[/tex] = wavelength measured in relative motion with regard to the source at velocity v
[tex]\lambda_s =[/tex] observed wavelength from the source's frame.
Given that:
[tex]\lambda _o[/tex] = 656.3 nm
[tex]\lambda_s =[/tex] 953.3 nm
We will realize that [tex]\lambda _o[/tex] > [tex]\lambda_s[/tex]; thus, v < 0 for this to be true.
From the above equation, let's make (v/c) the subject of the formula: we have:
[tex]\dfrac{\lambda_o}{\lambda_s}=\sqrt{\dfrac{c+v}{c-v}}[/tex]
[tex]\Big(\dfrac{\lambda_o}{\lambda_s} \Big)^2=\dfrac{c+v}{c-v}[/tex]
[tex]\dfrac{v}{c} =\dfrac{\Big(\dfrac{\lambda_o}{\lambda_s} \Big)^2-1}{\Big(\dfrac{\lambda_o}{\lambda_s} \Big)^2+1}[/tex]
[tex]\dfrac{v}{c} =\dfrac{\Big(\dfrac{656.3}{953.3} \Big)^2-1}{\Big(\dfrac{656.3}{953.3} \Big)^2+1}[/tex]
[tex]\dfrac{v}{c} =0.357[/tex]
v = 0.357 c
To m/s:
1c = 299792458 m/s
∴
0.357c = (299 792 458 × 0.357) m/s
= 107025907.5 m/s
= 1.07 × 10⁸ m/s