Verify that sec^2 xsin^2 x = tan^2 x


Sagot :

Here's the solution,

  • [tex] \sec {}^{2} (x) \times \sin {}^{2} (x) = \tan {}^{2} (x) [/tex]

  • [tex] \dfrac{1}{ \cos {}^{2} (x) } \times \sin {}^{2} (x) = \tan {}^{2} (x) [/tex]

  • [tex] \dfrac{ \sin {}^{2} (x) }{ \cos {}^{2} (x) } = \tan {}^{2} (x) [/tex]

  • [tex] \tan {}^{2} (x) = \tan {}^{2} ( { {x}^{} }^{} ) [/tex]