In simplest radical form, what are the solutions to the quadratic equation 6 = x2 - 10/?
Quadratic formula: * = -bt/b? 40c
20
O x=5+31
O x = 51/19
O x = 5+219
O x = 5+2/31


Sagot :

Answer:

[tex]x = 5 \± \sqrt{31}[/tex]

Step-by-step explanation:

Given

[tex]6 = x^2 - 10x[/tex]

Required

The solution in radical form

[tex]6 = x^2 - 10x[/tex]

Rewrite as:

[tex]x^2 - 10x - 6 = 0[/tex]

Using the quadratic formula, we have:

[tex]x = \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]

Where

a = 1

b = -10

c = -6

So, we have:

[tex]x = \frac{-(-10) \± \sqrt{(-10)^2 - 4*1*(-6)}}{2*1}[/tex]

[tex]x = \frac{10 \± \sqrt{100 +24}}{2*1}[/tex]

[tex]x = \frac{10 \± \sqrt{124}}{2}[/tex]

Split the roots

[tex]x = \frac{10 \± \sqrt{4 * 31}}{2}[/tex]

Express [tex]\sqrt 4[/tex] as 2

[tex]x = \frac{10 \± 2\sqrt{31}}{2}[/tex]

Split the fraction

[tex]x = \frac{10}{2} \± \frac{2\sqrt{31}}{2}[/tex]

[tex]x = 5 \± \sqrt{31}[/tex]