Answer:
Area = 24.75 sqr units
Step-by-step explanation:
You will need these formulas:
[tex]d = \sqrt{(x_2 - x_1)^2 + (y_2-y_1)^2}[/tex]
Midpoint = [tex](\frac{x_{1} + y_{1} }{2} , \frac{x_{2} + y_{2} }{2})[/tex]
Area = b x h
Let us treat CD as the base. Find the length of the base with the distance formula. Use the coordinates for points C & D.
[tex]d = \sqrt{(-2 - (-8))^2 + (-8-(-7))^2}[/tex]
[tex]d = \sqrt{37}[/tex]
The base is [tex]\sqrt{37}[/tex].
The height is the distance between point E and the midpoint of line CD.
Midpoint of CD = [tex](\frac{-8 + (-7) }{2} , \frac{-2 + (-8) }{2})[/tex] = ([tex]-\frac{15}{2}[/tex], [tex]-5[/tex])
Use the distance formula to find the height.
[tex]d = \sqrt{(-5 - (-\frac{15}{2} ))^2 + (-2-(-5))^2}[/tex]
[tex]d = \frac{\sqrt{61} }{2}[/tex]
Find the area with the two distances that were found.
Area = [tex](\sqrt{37}) (\frac{\sqrt{61} }{2})[/tex]
Area = [tex]\frac{\sqrt{2257} }{2}[/tex]
Area = 24.75 sqr units