Answer:
Approximately [tex]1.95 \times 10^{2}\; \rm J[/tex].
Explanation:
Look up the specific heat of gaseous neon:
[tex]c = 1.03 \; \rm J \cdot g^{-1} \cdot K^{-1}[/tex].
Calculate the required temperature change:
[tex]\Delta T = (37.9 - 20.0)\; \rm K = 17.9\; \rm K[/tex].
Let [tex]m[/tex] denote the mass of a sample of specific heat [tex]C[/tex]. Energy required to raise the temperature of this sample by [tex]\Delta T[/tex]:
[tex]Q = c \cdot m \cdot \Delta T[/tex].
For the neon gas in this question:
Calculate the energy associated with this temperature change:
[tex]\begin{aligned}Q &= c \cdot m \cdot \Delta T \\ &= 1.03\; \rm J \cdot g^{-1}\cdot K^{-1} \times 10.6\; \rm g \times 17.9\; \rm K \\ &\approx 1.95 \times 10^{2}\; \rm J\end{aligned}[/tex].