Correct question is;
A. p(-1.80 < z < 0.20 )
B. p(-0.4 < z < 1.4)
C. p(0.25 < z < 1.25)
D. p(-0.9 < z < -0.6)
Answer:
A) p(-1.80 < z < 0.20) = 0.54333
B) p(-0.4 < z < 1.4) = 0.57466
C) p(0.25 < z < 1.25) = 0.29564
D) p(-0.9 < z < -0.6) = 0.90981
Step-by-step explanation:
A) p(-1.80 < z < 0.20 )
This gives us;
P(z < 0.2) - P(z < -1.8)
From z-distribution tables;
P(z > 0.2) = 0.57926
And P(z < -1.8) = 0.03593
Thus;
p(-1.80 < z < 0.20) = 0.57926 - 0.03593 p(-1.80 < z < 0.20) = 0.54333
B) p(-0.4 < z < 1.4)
This gives us;
P(z < 1.4) - P(z < -0.4)
From z-distribution table, we have;
P(z > 1.4) = 0.91924
P(z < -0.4) = 0.34458
Thus;
p(-0.4 < z < 1.4) = 0.91924 - 0.34458
p(-0.4 < z < 1.4) = 0.57466
C) p(0.25 < z < 1.25)
From z-distribution table, we have;
P(z < 0.25) = 0.59871
P(z > 1.25) = 0.10565
Now, to solve this;
p(0.25 < z < 1.25) = 1 - (P(z < 0.25) + P(z > 1.25))
This gives;
p(0.25 < z < 1.25) = 1 - (0.59871 + 0.10565)
p(0.25 < z < 1.25) = 0.29564
D) p(-0.9 < z < -0.6)
From z-distribution table, we have;
P(z < -0.9) = 0.18406
P(z > -0.6) = 0.72575
Thus;
p(-0.9 < z < -0.6) = 0.18406 + 0.72575
p(-0.9 < z < -0.6) = 0.90981