Find the equation of the exponential function represented by the table below:

Find The Equation Of The Exponential Function Represented By The Table Below class=

Sagot :

Answer:

[tex]y =5(3)^x[/tex]

Step-by-step explanation:

Given

The attached table

Required

Determine the equation of the table

The table represents an exponential function. So, we make use of

[tex]y = ab^x[/tex]

When x = 0, y= 5.

So:

[tex]y = ab^x[/tex] becomes

[tex]5 = ab^0[/tex]

[tex]5 = a*1[/tex]

[tex]5 = a[/tex]

[tex]a = 5[/tex]

When x = 1; y = 15

So;

[tex]y = ab^x[/tex] becomes

[tex]15 = a * b^1[/tex]

[tex]15 = a * b[/tex]

Substitute 5 for a

[tex]15 = 5 * b[/tex]

Divide both sides by 5

[tex]\frac{15}{5} = \frac{5 * b}{5}[/tex]

[tex]3 = b[/tex]

[tex]b = 3[/tex]

Substitute values for a and b in: [tex]y = ab^x[/tex]

[tex]y =5(3)^x[/tex]