Answer:
[tex]y =5(3)^x[/tex]
Step-by-step explanation:
Given
The attached table
Required
Determine the equation of the table
The table represents an exponential function. So, we make use of
[tex]y = ab^x[/tex]
When x = 0, y= 5.
So:
[tex]y = ab^x[/tex] becomes
[tex]5 = ab^0[/tex]
[tex]5 = a*1[/tex]
[tex]5 = a[/tex]
[tex]a = 5[/tex]
When x = 1; y = 15
So;
[tex]y = ab^x[/tex] becomes
[tex]15 = a * b^1[/tex]
[tex]15 = a * b[/tex]
Substitute 5 for a
[tex]15 = 5 * b[/tex]
Divide both sides by 5
[tex]\frac{15}{5} = \frac{5 * b}{5}[/tex]
[tex]3 = b[/tex]
[tex]b = 3[/tex]
Substitute values for a and b in: [tex]y = ab^x[/tex]
[tex]y =5(3)^x[/tex]