Apply the means-extremes property of proportions: this allows you to cross multiply:
[tex]\boxed{\mathsf{\dfrac{x}{4} = \dfrac{x - 6}{3}}}[/tex]
[tex]\mathsf{\dfrac{x}{4} \searrow \dfrac{x - 6}{3}}[/tex] [tex]\mathsf{\dfrac{x}{4} \nearrow \dfrac{x-6}{3}}[/tex]
[tex]\boxed{\mathsf{3x = 4(x - 6)}}[/tex]
Apply the distributive property:
[tex]\mathsf{3x = 4(x-6)}[/tex]
[tex]\mathsf{3x = 4(x) - 4(6)}[/tex]
[tex]\mathsf{3x = 4x - 24}[/tex]
Add 24 to both sides:
[tex]\mathsf{3x + 24 = 4x - 24 + 24}[/tex]
[tex]\mathsf{3x + 24 = 4x}[/tex]
Substract 3x to both sides
[tex]\mathsf{3x - 3x + 24 = 4x - 3x}[/tex]
[tex]\mathsf{24 = 4x - 3x}[/tex]
[tex]\large{\boxed{\mathsf{24 = x}}}[/tex]