If A=[1 0 -1 7] find K such that A^2-8A-ki-KI=0

Sagot :

Answer:

K = -7

Step-by-step explanation:

If A=[1 0 -1 7] find K such that A^2-8A-ki-KI=0

Given the 2×2 matrices

A = [tex]\left[\begin{array}{ccc}1&0\\-1&7\\\end{array}\right][/tex]

We are to find K if  =0

A² =  [tex]\left[\begin{array}{ccc}1&0\\-1&7\\\end{array}\right][/tex][tex]\left[\begin{array}{ccc}1&0\\-1&7\\\end{array}\right][/tex]

A² = [tex]\left[\begin{array}{ccc}1&0\\-8&49\\\end{array}\right][/tex]

8A = 8[tex]\left[\begin{array}{ccc}1&0\\-1&7\\\end{array}\right][/tex]

8A = [tex]\left[\begin{array}{ccc}8&0\\-8&56\\\end{array}\right][/tex]

Since [tex]I = \left[\begin{array}{ccc}1&0\\0&1\\\end{array}\right] \\[/tex]

[tex]KI = \left[\begin{array}{ccc}K&0\\0&K\\\end{array}\right][/tex]

Substitute the resulting matrices into the expression above:

A^2-8A-KI =  [tex]\left[\begin{array}{ccc}1&0\\-8&49\\\end{array}\right][/tex] - [tex]\left[\begin{array}{ccc}8&0\\-8&56\\\end{array}\right][/tex] - [tex]\left[\begin{array}{ccc}K&0\\0&K\\\end{array}\right][/tex] =[tex]\left[\begin{array}{ccc}0&0\\0&0\\\end{array}\right][/tex]

From the expression, we have the equations;

1 - 8 - k = 0

-7 - k = 0

-7 = k

k = -7

Hence the value of K is -7