Sagot :
Answer:
-4,-3,-2,-1,0,1
Step-by-step explanation:
First, doublepound and simplify it.
-15<3n
3n<6
Solve:
-5<n
n<2
Compound:
-5<n<2.
So the values are -4,-3,-2,-1,0,1
Hope this helps plz hit the crown :D
Answer:
The values of 'n' such that -15 < 3n ≤ 6 will be:
[tex]-5<n\le \:2[/tex]
[tex]-5<n\le \:2[/tex] can also be represented as: -4, -3, -2, -1, 0, 1, 2
Hence, the values of integer n will be:
- -4, -3, -2, -1, 0, 1, 2
Thus,
[tex]-15<3n\le \:6\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-5<n\le \:2\:\\ \:\mathrm{Interval\:Notation:}&\:(-5,\:2]\end{bmatrix}[/tex]
The line graph is also attached below.
Step-by-step explanation:
Given the expression
-15 < 3n ≤ 6
Lets us solve the inequality for n
[tex]-15<\:3n\le \:6[/tex]
Divide all parts by n
[tex]\:-\frac{15}{3}<\frac{3n}{3}\le \frac{6}{3}[/tex]
simplify
[tex]-5<n\le \:2[/tex]
Therefore, the values of 'n' such that -15 < 3n ≤ 6 will be:
[tex]-5<n\le \:2[/tex]
[tex]-5<n\le \:2[/tex] can also be represented as: -4, -3, -2, -1, 0, 1, 2
Hence, the values of integer n will be:
- -4, -3, -2, -1, 0, 1, 2
Thus,
[tex]-15<3n\le \:6\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-5<n\le \:2\:\\ \:\mathrm{Interval\:Notation:}&\:(-5,\:2]\end{bmatrix}[/tex]
The line graph is also attached below.