divide 81 -x^2 y^2 by (9-xy) (3 + xy)​

Sagot :

Answer:

When we divide 81 -x²y² by (9-xy) (3 + xy)​, we determine the expression is:

[tex]\frac{81-x^2y^2}{\left(9-xy\right)\left(3+xy\right)}=\frac{9+xy}{3+xy}[/tex]

Step-by-step explanation:

Let us divide 81 -x²y² by (9-xy) (3 + xy)​

so

Given the expression

[tex]\frac{81-x^2y^2}{\left(9-xy\right)\left(3+xy\right)}[/tex]

Factor -x²y² + 81 = (9+xy) (9-xy)

[tex]\frac{81-x^2y^2}{\left(9-xy\right)\left(3+xy\right)}=\frac{\left(9+xy\right)\left(9-xy\right)}{\left(9-xy\right)\left(3+xy\right)}[/tex]

Cancel the common term: 9-xy

                    [tex]=\frac{9+xy}{3+xy}[/tex]

Therefore, when we divide 81 -x²y² by (9-xy) (3 + xy)​, we determine the expression is:

[tex]\frac{81-x^2y^2}{\left(9-xy\right)\left(3+xy\right)}=\frac{9+xy}{3+xy}[/tex]