Sagot :
Hello,
[tex]3 x^{2} -y^{3} -y^{3}-z \\ =3 x^{2} -2y^{3}-z \\ \\ Replacing:\,\, \,\,x=3\,\, \,\,y=-2\,\, \,\,z=-5 \\ \\ =3(3)^{2} -2(-2)^{3}-(-5) \\ =3*9-2*(-8)+5 \\ =27+16+5 \\ =48[/tex]
Answer: 48
[tex]3 x^{2} -y^{3} -y^{3}-z \\ =3 x^{2} -2y^{3}-z \\ \\ Replacing:\,\, \,\,x=3\,\, \,\,y=-2\,\, \,\,z=-5 \\ \\ =3(3)^{2} -2(-2)^{3}-(-5) \\ =3*9-2*(-8)+5 \\ =27+16+5 \\ =48[/tex]
Answer: 48
Answer:
The value of [tex]3x^2-y^3-y^3-z[/tex] is, 48
Step-by-step explanation:
Given the equation:
Let f(x, y, z) = [tex]3x^2-y^3-y^3-z[/tex] .....[1]
Like terms states that the terms which have the same variables.
Combine like terms in equation [1];
[tex]f(x, y, z) =3x^2-2y^3-z[/tex] ......[2]
Given: x= 3 , y= -2 and z = -5.
Substitute these given values in [2] we get;
[tex]f(3, -2, -5) =3(3)^2-2(-2)^3-(-5)[/tex]
[tex]f(3, -2, -5) =3(9)-2(-8)-(-5)[/tex] = 27 + 16 +5 = 48.
Therefore, the value of [tex]3x^2-y^3-y^3-z[/tex] is, 48